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SUMMARY 

Wind-tunnel measurements of t h e  sonic-boom pressure signatures of models of 
th ree  proposed supersonic t ranspor ts  have been made i n  t he  Langley 4- by 4-foot 
supersonic pressure tunnel.  The r e s u l t s  have shown reasonable corre la t ion of 
adjusted pressure r i s e  values with avai lable  theory, observed discrepancies 
being a t  most 10 percent of t he  measured values of overpressures. Estimated 
ground overpressures f o r  airplanes with equal weights of 300,000 pounds at a 
representative cruise  a l t i t ude  of 70,000 f e e t  range from 1 . 4  lb/sq f t  f o r  a 
highly swept arrow-wing configuration t o  1.65 lb/sq f t  f o r  a configuration 
employing a wing of moderate sweep i n  an a f t  locat ion.  

INTRODUCTION 

Sonic-boom considerations a r e  ce r ta in  t o  have a l a rge  influence on t h e  
operational  procedures adopted f o r  fu tu re  supersonic a i r  t ranspor ts .  This noise 
problem may a l so  t o  some degree influence the  choice of a i rplane configuration. 

The purpose of t h i s  invest igat ion i s  t o  es tab l i sh  i n  general  the  magnitude 
of t he  ground overpressures and t o  provide information r e l a t i ve  t o  t h e  dependence 
of boom st rength on configuration. Measurements of t h e  sonic-boom pressure s ig-  
natures of th ree  supersonic t ranspor t  configurations have been made i n  a s e r i e s  
of t e s t s  conducted i n  t he  Langley 4- by &-foot supersonic pressure tunnel.  The 
models a r e  very small sca le  representations of t he  configurations whose aero- 
dynamic charac te r i s t i cs  were studied i n  references 1, 2, and 3 .  The t e s t s  a t  
Mach numbers of 1 . 4 1  and 2.01 were performed by using t he  apparatus and tech- 
niques described i n  reference 4. Both wind-tunnel measurements and avai lable  
theory have been used i n  making estimates of overpressure on t he  ground f o r  
supersonic-transport cruise  conditions. 
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A double prime ("1 denotes a second derivative with respect t o  distance. 

MODELS AND TESTS 

Photographs and drawings of the t e s t  models a re  shown i n  figures 1 and 2, 
respectively. The following tab le  gives f o r  each configuration the reference 
from which the model geometry was derived, the scale re la t ive  t o  t h a t  of t h e  
references, the  sonic-boom-model assumed length, and nondimensional values of 
wing areas and t o t a l  volumes. 

i 

Configuration Reference Scale L, in .  S /L2 v /L3 

1 1 -0.0211 1.02 0.126 0.00255 
2 2 ,0250 1.15 097 .00258 
3 3 .0244 1.0 .113 .00328 

' These s m a l l  models duplicated most but not all of the  major features of the  pro- 
posed transport configurations. Configuration 1 was b u i l t  without the fuselage 
camber of the  original.  I n  configuration 2, the  empennage and nacelles have been 

-omitted, but the  nacelle volume was accounted f o r  i n  a thickened wing t r a i l i n g  
edge. Configuration 3 i s  essent ial ly  complete but has minor changes i n  fuselage 
camber. I n  designing the  models, the engine-stream-tube capture area has been 
subtracted from the  nacelle o r  engine package cross-sectional area. 

The l i f t -coef f ic ien t  variation with angle of attack has been estimated from 
t h e  aerodynamic data of references 1, 2, and 3 by taking in to  account insofar as  
possible the previously mentioned departures of the sonic-boom models from the  
force models. This information i s  summarized i n  the following table: 



Configuration 

The lift coeff ic ient  f o r  each t e s t  condition was calculated by using these  e s t i -  
mates taking i n to  account measured tunnel flow angularity, and def lect ions  of t he  
models under load. 

The t e s t s  were conducted i n  t h e  Langley 4- by 4-foot supersonic pressure 
tunnel at  Mach numbers of 2.01 and 1 .41 and a Reynolds number per  f oo t  of 

6 2.5 x 1 0  . A sketch of t h e  t e s t  apparatus i s  shown i n  f i gu re  3. The model was 
s t i ng  mounted on a support system which provided f o r  remotely controlled adjust-  
ments i n  t h e  longitudinal  pos i t ion  of t h e  model. Measurements of t h e  pressure 
f i e l d  were made by means of s ta t ic-pressure  probes located at  dis tances  measured 
perpendicular t o  t h e  free-stream d i rec t ion  of 12.5, 25, and 50 inches from the  
model at M = 2.01 and of 12.5, 25, and 42 inches from t h e  model a t  M = 1.41. 
The probes were very slender cones (10 cone angle) with four 0.013-inch-diameter 
s ta t ic-pressure  o r i f i c e s  leading t o  a common chamber. The o r i f i c e s  were circum- 
f e r e n t i a l l y  spaced 90' apar t  and were arranged t o  l i e  i n  a Mach cone or iginat ing 
at t he  model. Models were mounted i n  t h e  tunnel i n  inverted posi t ions  so t h a t  
t h e  measured pressure signatures would correspond t o  those found d i r e c t l y  below 
an a i rplane i n  normal-flight a t t i t ude .  

THEOREIIIICAL CONSIDERATIONS 

An expression derived from reference 5 gives t he  pressure r i s e  a t  t he  bow 
shock emanating from a wing-body combination i n  a uniform atmosphere as: 

( )  (')514 = KIP 114 1.197 
max L Vm 

The term K1 i s  a re f lec t ion  f ac to r  which depends on t he  nature of t he  surface 

on which t he  measurements a r e  made. For t he  measuring probes used i n  these t e s t s  
a r e f l ec t i on  f ac to r  of un i ty  was assumed. The l i m i t  To is  t h e  root  of t h e  
equation F(;) = 0 which gives t h e  l a rges t  posi t ive  value f o r  t h e  i n t eg ra l .  

The function F($) depends on t he  longitudinal  d i s t r i bu t i on  of cross- 

sect ional  area  and of l i f t  a s  defined i n  t he  following equation: 



The area d i s t r i bu t i on  of t he  models shown i n  f igure  2 represents normal cross- 
sec t iona l  areas corresponding t o  M = 1.0 supersonic area ru l e  cuts.  I n  t he  
i n t e r e s t  of simplici ty,  a  uniform d i s t r i bu t i on  of l i f t  over t he  wing planform 
was assumed t o  ex i s t .  The equations were evaluated i n  a manner s imilar  t o  t h a t  
used i n  reference 6. The calcula t ion procedures were adapted t o  machine com- 
puting, 40 points  along t h e  body ax i s  being used t o  describe t he  a rea  and l i f t  
d i s t r ibu t ions .  

The length  of t h e  pos i t ive  port ion of t h e  pressure signature can be expressed 
by t h e  following equation derived from reference 5:  

The slope of t h e  l i n e a r  port ion of t h e  signature may thus be wri t ten  i n  t h e  f c l -  
lowing form which shows i t s  independence of a i rplane geometry: 

RESULTS AND DISCUSSION 

Measurements of pressure signatures f o r  t h e  th ree  configurations a r e  shown 
i n  f igure  4. Pressures and distances a r e  p lo t ted  i n  parametric form i n  accord- 
ance with t heo re t i c a l  considerations. ( see  eqs. (1) and (3).  ) According t o  
theory, t he  f a r - f i e l d  pressure signatures f o r  a given model and l i f t i n g  condition 
when p lo t ted  i n  t h i s  form should be i den t i ca l  regardless of distance and should 
assume a cha rac t e r i s t i c  "N" shape. I n  some cases it i s  qui te  evident t h a t  t h i s  
f a r - f i e l d  condition has not been a t ta ined.  Fai lure  t o  display t he  N-shape i s  
more noticeable a t  t h e  lower l i f t  coefficients,  pa r t i cu la r ly  a t  M = 1.41. 

I n  order t o  compensate f o r  t he  lack of attainment of f a r - f i e ld  conditions, 
f o r  t h e  probe boundary layer, and f o r  t he  e f f ec t s  of v ibrat ion of t he  models and 
t e s t  apparatus, t h e  maximum pressure-rise r a t i o  a t  t h e  bow shock was found by 
using t h e  method discussed i n  t h e  appendix of t h i s  report .  This adjusted value 
of t h e  bow-shock pressure r i s e  has been p lo t ted  against  distance i n  f i gu re  5 .  
The f a i r e d  curves of these  p lo t s  represent an attempt a t  extrapolation t o  t he  
eventual constant value of t he  parameter as  f a r - f i e ld  conditions a re  approached. 

a t r a p o l a t e d  tunnel sonic-boom data  are  compared with theory i n  f igure  6, 
A pressure-rise parameter has been p lo t ted  against  a l i f t  parameter, These 



paramett.ivs p e w t  clata f o r  a l l  k c h  nuhers  and l i f t  coefficients t o  be plotted 
on a single se t  of axes. The cross-hatched band represents a fa i r ing  of the 
experimental data. Theoretical estimates are  shown as two curves: fo r  one, 
boundary-layer effects  on the  model are  ignored; f o r  the  other, the area d i s t r i -  
bution used i n  the  calculations includes the  estimated area contained within the 
displacement thickness of a laminar boundary layer. An improved correlation may 
be noted when boundary-layer effects  are included. The greatest  discrepancies 
between theory and eqeriment occur f o r  configuration 1, where the measured over- 
pressures are  some 6 t o  10 percent greater than indicated by the  theory. The 
reason f o r  t h i s  discrepancy contrasted with the  good agreement f o r  configura- 
t ions  2 and 3 has not been determined. The magnitude of the  difference i n  over- 
pressure i s  s l ight ly  greater than tha t  which would be caused by the presence of 
a turbulent boundary layer on the  model rather than the  assumed laminar layer.  , 
I n  comparing the  overpressure parameters fo r  the  three configurations it is  of 
in teres t  t o  note tha t  configurations 1 and 2 which more nearly meet the require- 
ments f o r  an approach t o  the  sonic-boom lower bound as discussed i n  reference 7, 
do i n  f ac t  have lower measured values of the parameter. I n  view of the d i f f i -  

u 

cul t ies  associated with the  construction and tes t ing  of these extremely small 
models and i n  ascertaining how closely the  completed model followed the model 
drawings, there i s  some question whether the experimental data o r  the  theory w i l l  
provide the  more accurate estimate of the sonic-boom characteristics of these 
configurations . 

Estimates of the  overpressure on the ground t o  be expected during f l i g h t  
may be made with the  use of both theory and wind-tunnel data. I n  the estimates 
shown i n  figure 7 a weight of 360,000 pounds at a Mach number of 1.41was chosen 
t o  represent the  climb-out portion of the  f l i g h t  and a weight of 300,000 pounds 
at a Mach number of 3.0 was chosen t o  represent the cruise portion. The length 
w a s  chosen so tha t  each configuration would have a t o t a l  volume of 15,000 cu f t .  
Estimates of ground overpressures based on the  adjusted wind-tunnel measurements 
of bow-shock pressure r i s e  take in to  account differences between effective area 
dis tr ibut ion of models and ful l -s ize airplanes due t o  differences i n  the  dis- 
placement thickness of the  boundary layer as  discussed i n  the example given i n  
the appendix. A reference pressure p equal t o  the  atmospheric pressure a t  mid- 
a l t i tude  was used since i n  reference 4 t h i s  method gave good correlation of tun- 
ne l  data and f l i g h t  data from reference 8. ( A  rigorous treatment of the  effects  
of a nonuniform atmosphere may be found i n  ref .  9.) It is necessary t o  establish1 
a ref lect ion fac tor  since overpressure a t  ground level  depends d i rec t ly  on i t s  
value. The fac tor  of 2.0 found t o  apply fo r  the  dry lake bed over which the  
f l i g h t  t e s t s  of reference 8 were conducted may not be representative of average -. 
conditions over the  continental United States; however, an overall  average i s  
l ike ly  t o  be greater than the  fac tor  of 1.75 t o  1.80 measured i n  reference 10. A 
compromise value of 1.9 was  chosen f o r  use i n  the  present study. Overpressure 
estimates f o r  a representative cruise a l t i tude  of 70,000 fee t  range from a value 
of about 1.4 lb/sq f t  f o r  configuration 2 t o  about 1.65 lb/sq f t  f o r  configura- 
t i o n  3. It must be understood tha t  these overpressure values depend on the  
assumed weights which may not be quite r e a l i s t i c  and furthermore are  not l ike ly  
t o  be equal f o r  actual  airplanes based on the  several configurations necessary 
t o  fu l f i l l  the same mission requirements. 



CONCLUDING REMARKS 

Wind-tunnel measurements of the  sonic-boom character is t ics  of three super- 
sonic transport  configurations have shown reasonable correlation of adjusted 
pressure-rise values with available theory, observed discrepancies being a t  most 
10 percent of the measured values of overpressures. Estimated ground overpres- 
sures f o r  airplanes with equal weights of 300,000 pounds at  a representative 
cruise  a t t i t ude  of 70,000 f e e t  range from about 1.4 lb/sq f t  f o r  a highly swept 
arrow-wing configuration t o  about 1.65 lb/sq f t  f o r  a configuration employing a 
wing of moderate sweep i n  an a f t  location. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 20, 1963. 



ADJUSTMENTS OF WIMD-TUNNEL WSmEMENTS OF BOW-SHOCK STRENGTH 

TO COMPENSATE FOR EXPERIMENTAL DEFICIENCIES 

A number of experimental d i f f i c u l t i e s  a r i s e  i n  attempting t o  measure within 
the  confines of a wind tunnel the  pressure signatures of t he  necessari ly small 
models and i n  attempting t o  extend t h e  r e s u l t s  t o  apply t o  fu l l - s i z e  a i rplanes  
at f l i g h t  a l t i t udes .  The necessi ty of a t t a in ing  o r  approaching f a r - f i e l d  condi- 
t i ons  where t h e  pressure signature assumes a charac te r i s t i c  N-shape requires  t h a t  
tunnel  models be extremely small. Even with models a s  small as  those  employed i n  
t h e  present invest igat ion t h e  f a i l u r e  t o  achieve i n  a l l  cases an approach t o  f a r -  
f i e l d  conditions creates  serious problems. It does not appear t o  be p r a c t i c a l  t o  
reduce fu r the r  t h e  model s i z e  because of construction d i f f i c u l t i e s  and because 
vibrat ions  of models, probes, and support apparatus introduce changes i n  t h e  shape 
of t h e  pressure signature and i n  t h e  magnitude of t h e  pressure r i s e ,  which become 
progressively more pronounced a s  model s i z e  i s  decreased. The presence of a 
boundary layer  on t h e  measuring probe a l so  introduces changes i n  t he  shape of t h e  
signature and i n  t he  magnitude of t h e  pressure r i s e ,  which a r e  dependent on model 
s ize .  Another r e s u l t  of decreased model s i z e  i s  t he  increase i n  r e l a t i v e  impor- 
tance of t h e  increment i n  e f fec t ive  cross-sectional  a rea  due t o  model boundary 
layer  discussed i n  t h e  t e x t .  

With a cornpromise model s i z e  t h e  experimental def ic iencies  i n  a t t a in ing  a 
f a r - f i e l d  N pressure signature a re  always present t o  some degree and a r e  some- 
times l a rge .  Thus, a method of in te rpre t ing  t h e  r e su l t s  and compensating f o r  
these  def ic iencies  becomes necessary. The following discussion explores these  
problems and suggests a method of adjusting t h e  wind-tunnel data. 

The f a i l u r e  t o  achieve a c l a s s i ca l  N-wave i n  t he  present t e s t s  i s  due i n  
pa r t  t o  t h e  f a c t  t h a t  i n  many cases t he  pressure signatures a r e  i n  t h e  t r a n s i t i o n  
region from near-f ie ld  t o  f a r - f i e ld  conditions. The near-f ie ld  shape of t h e  pres- 
sure signature i s  evidenced by t he  presence of two d i s t i n c t  pulses i n  t h e  region 
of t h e  bow shock. These probably a r e  t h e  separate shocks from the  fuselage nose 
and from t h e  wing-body juncture. It has been noted tha t ,  even f o r  qu i te  complex 
signatures, a l i n e a r  port ion of t he  pressure signature develops a i~d  t h e  slope 
closely agrees with t h e  estimated one when f a r - f i e l d  theory i s  used. By accepting 
t he  premise tha t ,  during t h i s  t rans i t ion ,  t h e  impulse area under t h e  bow shock 
postion of t he  signature at tenuates with distance i n  a manner i den t i ca l  t o  t h a t  
f o r  a f u l l y  developed N-wave, an attempt may be made t o  define t he  pressure sig- 
nature t h a t  would e x i s t  i f  f a r - f i e ld  conditions were established.  The adjusted 
signature may be determined a s  i l l u s t r a t e d  i n  sketch 1 simply by extending t h e  
l i n e a r  port ion of t h e  measured signature forward so t h a t  a r i gh t  t r i a n g l e  i s  
formed whose a rea  i s  equal t o  the  area  under t h e  measured curve. Because of 
inexactness i n  t h e  assumptions, t h e  adjustment cannot be rigorously correct;  how- 
ever, a p r a c t i c a l  t e s t  would appear t o  be met when adjusted signatures p lo t ted  
i n  t h e  foa~ri used i i l  figu-re 4 remain constant as distance i s  increased* 



Sketch 1 

I n  order t o  study t h e  influence of vibration,  consider a completely steady 
model i n  uniform supersonic flow and an i dea l  pressure sensing system with a 
probe at  a distance l a rge  enough so t h a t  a t r u e  f a r - f i e l d  N-wave i s  recorded, as 
represented by t h e  long-dash l i n e  i n  sketch 2. Suppose t h a t  t h e  model ( o r  t h e  

Time 

Sketch 2 

measuring probe) undergoes a constant-amplitude vibratory motion represented by 
t h e  i n se t  sketch i n  sketch 2. I n  t h i s  case, t h e  N-wave w i l l  occupy successive 
posi t ions  at equal time increments as  indicated by t h e  short-dash l i n e s  on t h e  
pressure signature p l o t  of sketch 2. A t  a given longitudinal  probe loca t ion  a 
highly damped measuring system such a s  t he  one used f o r  these  t e s t s  would r e g i s t e r  
a time average of t h e  pressures imposed on it. When a range of probe locat ions  
i s  considered, t h e  measured pressure signature with a constant-amplitude 
vibrat ing system takes  on t h e  appearance of t h e  s o l i d  curve. This curve does not 
resemble t h e  ac tua l  wind-tunnel data, but it i s  not l i k e l y  t h a t  tunnel v ib ra t ion  
i s  confined t o  t h e  s i ng l e  amplitude shown here. 

When a varying amplitude i s  considered, t he  resu l t ing  pressure s ignature  
assumes t he  charac te r i s t i cs  of t h a t  shown i n  sketch 3 .  The assumed amplftude- 
time re la t ionship  i s  shown i n  t he  i n se t .  The resu l t ing  signature now resembles 
those obtained from ac tua l  tunnel measurements. 



Sketch 3 

Time 

I n  both sketches 2 and 3, note tha t  the  areas under the curves a r e  almost 
unchanged from the  steady t o  the  vibrating condition. Also note tha t  the  middle 
portion of the signature remains unaffected provided the  amplitude of the  vibra- 
t i o n  i s  l e s s  than the length of the  signature. These observations may now be 
u t i l i zed  i n  an attempt t o  adjust the  measured data t o  provide an estimate of the 
pressure signature i n  the absence of vibration. This adjustment may be accom- 
plished by extending the l inear  portion of the  measured signature forward so tha t  
a r ight  t r iangle i s  formed whose area i s  equal t o  the area under the measured 
curve. Since t h i s  procedure i s  ident ical  t o  tha t  previously discussed i n  the 
compensation f o r  the  presence of near-field pressure signature characteristics,  
one adjustment w i l l  suff ice f o r  both deficiencies. 

The foregoing discussion of vibration effects  w a s  considered t o  be inde- 
pendent of possible viscous effects.  The boundary layer, however, is a signif i -  
cant fac tor  i n  the  sensing of static-pressure changes across shock waves. The 
imposition of shock-wave pressure gradients on boundary layers of pressure- 
sensing instruments generally produces flow distortions which can be sensed both 
upstream and downstream of shock locations. This condition effectively resul t s  
i n  tendencies f o r  instrument-sensed pressure changes across shock waves t o  be 
l e s s  abrupt than pressure discontinuities across the shock waves i n  t h e  absence 
of instruments. Such effects  of boundary layer, as well as effects  of vibration, 
i n  spreading and rounding off shock-wave pressure signatures are  approximately 
accounted f o r  by the  previously described technique f o r  adjusting wind-tunnel 
pressure measurements. The applicabi l i ty  of the adjustment technique may be 
uncertain, however, i f  the  pressure-sensing arrangements are  different  from those 
employed i n  references 4 and 6 and i n  the  present investigation. 

The application of t h i s  adjustment technique may be observed i n  the  fol-  
lowing example. Sketch 4 shows a wind-tunnel measured pressure signature f o r  a 
model of a supersonic bomber airplane (configuration 2) representative of those 
obtained i n  reference 4. An adjusted tunnel pressure signature i s  obtained by 
constructing a r ight  t r iangle having the  measured slope and having an area equal 
t o  the  area under the  measured signature.  h he method suggested herein yields 
resul t s  s i m i l a r  t o  those obtained by using the method of ref.  4. However, t h i s  
proposed adjustment method has the added feature of being applicable t o  complex 



Sketch 4 

signatures where near-field phenomena are  evident.) I n  sketch 5 adjusted values 
of the  tunnel measured pressure r i s e  a t  the  bow shock f o r  configuration 2 of ref- 
erence 4 a re  compared with theory. 

e) max 6y4 
.08 , l 2  2,?,unnel data 

\-- Theory, no boundary layer  
.Oh Theory, with boundary layer 

Sketch 5 

The measured pressures compare more favorably with the theory when the  added 
thickness of a laminar boundary layer  (as  discussed i n  the t ex t )  i s  considered. 

I n  order t o  indicate the a b i l i t y  of the  wind-tunnel data corrected on the 
basis  of t h i s  technique t o  estimate f l i g h t  results,  a comparison of adjusted 
tunnel data  with f l i g h t  data f o r  a bomber airplane has been made. The extrapo- 
l a t i o n  of adjusted tunnel data t o  ful l -scale  conditions takes into account dif-  
ferences i n  t h e  re la t ive  thickness of the  boundary layer on the model and on the 
airplane evaluated i n  the following manner. The theoret ical  value of sonic-boom 



overpressure parameter i s  obtained f o r  the  model by using an area  d i s t r i bu t i on  
which includes t h e  estimated displacement thickness of a laminar boundary layer  
and f o r  t he  a i rplane by using an area  d i s t r ibu t ion  which includes t he  estimated 
displacement thickness of a turbulent  boundary layer .  The difference i n  these  
t heo re t i c a l  values i s  then subtracted from a f a i r i n g  of experimental data  as 
presented i n  sketch 5 .  This revised curve, together with t h e  appropriate values 
f o r  t he  fac tors  i n  t h e  overpressure and l i f t  parameters may then be used i n  e s t i -  
mating t h e  ground overpressure. 

For t h e  range of f l i g h t  conditions (a l t i tude ,  Mach number, and weight) 
covered i n  reference 8, sketch 6 shows a comparison of measured pressure on t h e  
ground d i r e c t l y  below t h e  a i rplane with estimates based on tunnel da ta  and with 
theory. I n  both t h e  theory and tunnel data  estimates, t he  reference pressure p 

Altitude, f t  

Sketch 6 

Fl ight  

Tunnel 

Theory 

data  

da ta  

w a s  taken as  t h e  pressure at  mid-altitude and ' the  r e f l ec t i on  f ac to r  f o r  t h e  dry 
l ake  bed over which t h e  f l i g h t s  were made was chosen as 2.0. The reasonably 
close agreement of f l i g h t  data, adjusted tunnel data, and theory may be taken as 
an indicat ion of t he  degree of confidence which may be placed on fu r the r  e s t i -  
mates made by using these  methods. 
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(a) Configuration 1. 

Figure 2.- Sketches of models. 
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(b) Configuration 2. 

Figure 2. - Continued. 
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(c) Configuration 3. 

Figure 2.- Concluded. 
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Figure 3.- Sketch of t es t  setup. 



(a) Configuration 1; M = 1.41. 

Figure 4. - Measured pressure signatures. Dashed l ine  indicates adjusted signature. 



(b) Configuration 1; M = 2.01. 

Figure 4. - Continued. 



(c) Configuration 2; M = 1.41. 

Figure 4.- Continued. 



(a) Configuration 2; M = 2.01. 

Figure 4. - Continued. 



(e) Configuration 3; M = 1.41. 

Figure 4. - Continued. 



(f) Configuration 3; M = 2.01. 

Figure 4. - Concluded. 
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Figure 5.- Variation of adjusted bar-shock pressure r i s e  with distance. 
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Figure 6.- Comparison of extrapolated tunnel data with theory. 
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Figure 7.- Estimated ground overpressures. 
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